As the static charge buildup in a storm cloud increases, the electric field surrounding the cloud becomes stronger. Normally, the air surrounding a cloud would be a good enough insulator to prevent a discharge of electrons to Earth. Yet, the strong electric fields surrounding a cloud are capable of ionizing the surrounding air and making it more conductive. The ionization involves the shredding of electrons from the outer shells of gas molecules. The gas molecules which compose air are thus turned into a soup of positive ions and free electrons. The insulating air is transformed into a conductive plasma. The ability of a storm cloud's electric fields to transform air into a conductor makes charge transfer (in the form of a lightning bolt) from the cloud to the ground (or even to other clouds) possible.
A lightning bolt begins with the development of a step leader. Excess electrons on the bottom of the cloud begin a journey through the conducting air to the ground at speeds up to 60 miles per second. These electrons follow zigzag paths towards the ground, branching at various locations. The variables which affect the details of the actual pathway are not well known. It is believed that the presence of impurities or dust particles in various parts of the air might create regions between clouds and earth which are more conductive than other regions. As the step leader grows, it might be illuminated by the purplish glow which is characteristic of ionized air molecules. Nonetheless, the step leader is not the actual lightning strike, it merely provides the roadway between cloud and Earth along which the lightning bolt will eventually travel.
As the electrons of the step leader approach the Earth, there is an additional repulsion of electrons downward from Earth's surface. The quantity of positive charge residing on the Earth's surface becomes even greater. This charge begins to migrate upward through buildings, trees and people into the air. This upward rising positive charge - known as a streamer - approaches the step leader in the air above the surface of the Earth. The streamer might meet the leader at an altitude equivalent to the length of a football field. Once contact is made between the streamer and the leader, a complete conducting pathway is mapped out and the lightning begins. The contact point between ground charge and cloud charge rapidly ascends upward at speeds as high as 50 000 miles per second. As many as a billion trillion electrons can transverse this path in less than a millisecond. This initial strike is followed by several secondary strikes or charge surges in rapid succession. These secondary surges are spaced apart so closely in time that may appear as a single strike. The enormous and rapid flow of charge along this pathway between the cloud and Earth heats the surrounding air, causing it to expand violently. The expansion of the air creates a shockwave which we observe as thunder.
Lightning Rods and Other Protective Measures
Tall buildings, farm houses and other structures susceptible to lightning strikes are often equipped with lightning rods. The attachment of a grounded lightning rod to a building is a protective measure which is taken to protect the building in the event of a lightning strike. The concept of a lightning rod was originally developed by Ben Franklin. Franklin proposed that lightning rods should consist of a pointed metal pole which extends upward above the building which it is intended to protect. Franklin suggested that a lightning rod protects a building by one of two methods. First, the rod serves to prevent a charged cloud from releasing a bolt of lightning. And second, the lightning rod serves to safely divert the lightning to the ground in event that the cloud does discharge its lightning via a bolt. Franklin's theories on the operation of lightning rods have endured for a couple of centuries. And not until the most recent decades have scientific studies provided evidence to confirm the manner in which they operate to protect buildings from lightning damage.
The first of Franklin's two proposed theories is often referred to as the lightning dissipation theory. According to the theory, the use of a lightning rod on a building protects the building by preventing the lightning strike. The idea is based upon the principle that the electric field strength is great around a pointed object. The intense electric fields surrounding a pointed object serve to ionize the surrounding air, thus enhancing its conductive ability. The dissipative theory states that as a storm cloud approaches, there is a conductive pathway established between the statically charged cloud and the lightning rod. According to the theory, static charges gradually migrate along this pathway to the ground, thus reducing the likelihood of a sudden and explosive discharge. Proponents of the lightning dissipation theory argue that the primary role of a lightning rod is to discharge the cloud over a longer length of time, thus preventing the excessive charge buildup which is characteristic of a lightning strike.
The second of Franklin's proposed theories on the operation of the lightning rod is the basis of the lightning diversion theory. The lightning diversion theory states that a lighting rod protects a building by providing a conductive pathway of the charge to the Earth. A lightning rod is typically attached by a thick copper cable to a grounding rod which is buried in the Earth below. The sudden discharge from the cloud would be drawn towards the elevated lightning rod but safely directed to the Earth, thus preventing damage from occurring to the building. The lightning rod and the attached cable and ground pole provide a low resistance pathway from the region above the building to the ground below. By diverting the charge through the lightning protection system, the building is spared of the damage associated with a large quantity of electric charge passing through it.
Lightning researchers are now generally convinced that the lightning dissipation theory provides an inaccurate model of how lightning rods work. It is indeed true that the tip of a lightning rod is capable of ionizing the surrounding air and making it more conductive. However, this affect only extends for a few meters above the tip of the lightning rod. A few meters of enhanced conductivity above the tip of the rod is not capable of discharging a large cloud which stretches over several kilometers of distance. Unfortunately, there are currently no scientifically verified methods of lightning prevention. Furthermore, recent field studies have further shown that the tip of the lightning rod does not need to be sharply pointed as Ben Franklin suggested. Blunt-tipped lightning rods have been found to be more receptive to lightning strikes and thus provide a more likely path of discharge of a charged cloud. When installing a lightning rod on a building as a lightning protection measure, it is imperative that the rod be elevated above the building and connected by a low resistance wire to the ground.
No comments:
Post a Comment